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Abstract-A porohyperelastic~transport-swelling(PHETS) model is presented in which a soft
hydrated tissue material is viewed as a continuum composed of an incompressible porous solid
(fibrous matrix) that is saturated by an incompressible fluid (water) in which a mobile species
(solute) is dissolved. This PHETS theoretical model is implemented using a finite element model
(FEM) including inherent nonlinearity, coupled transport processes, and complicated geometry and
boundary conditions associated with soft tissue structures. The PHETS material properties are
clearly identified with a physical basis describing and quantifying elasticity, permeability, diffusion,
convection, and osmotic properties. The equivalence between the PHETS and the triphasic (TRI)
model (Lai et al., 1991) is established using the phenomenological equations, and mathematical
expressions are given to relate the PHETS and TRI material properties. A principle of virtual
velocities (PVV) links Eulerian and Lagrangian PHETS formulations and provides correspondence
rules between the Eulerian and the Lagrangian field variables and material properties. The PVV is
also the basis for a mixed Lagrangian PHETS FEM (Kaufmann, 1996), which was developed for
the analysis of soft hydrated tissues. Selected PHETS FEM results are presented in order to
demonstrate the capability of the PHETS model to simulate coupled deformation, stress, mobile
water flux, and albumin flux in the arterial wall undergoing finite straining associated with pre
ssurization, axial stretch, and changes in albumin concentration in bath solutions surrounding a
segment of rabbit thoracic aorta. Values for isotropic material parameters and specific details of the
experiments and data-reduction methods were obtained from Simon et al. (1997; 1998). © 1998
Elsevier Science Ltd. All rights reserved.

INTRODUCTION

Numerous theoretical, experimental, and finite element models (FEMs) have been
developed for the study of soft hydrated biological tissues. These models must include
material nonlinearity, finite deformation, transport of mobile tissue fluid, and coupled
electrical-mechanical--ehemical effects associated with mobile charged species. Rep
resentative research projects using this modeling view in biomechanics were reviewed by
Simon (1992). More recent work includes the papers by Houben (1996), Leventson et al.
(1997), Simon et al. (1996), Snijders et al. (1995), and Vankan et al. (1997). We also note
that the geomechanics and soil mechanics literature provides a large number of references
in which such theories are described, e.g., the early work by Biot (1972) extended the
poroelastic theory to include large strains and material nonlinearity. During the last decade,
a number of soft tissue-transport studies have been based upon the fundamental papers by
Lai et al. (1991) and Gu et al. (1993), which described a triphasic (TRI) theory for the
analysis of such soft tissue structures. The TRI model defines soft tissue as a three-phase
(or multi-phase) mixture, i.e., the solid phase and the mobile fluid and ionic phase(s). In this
paper, we will present a porohyperelastic-transport-swelling (PHETS) model, described by
Kaufmann (1996), in which physically based material properties are identified that can be
measured experimentally for soft tissues (here rabbit aortas). In this PHETS model, the
hydrated tissue is viewed as a continuum composed of an incompressible porous solid
(fibrous matrix) that is saturated by an incompressible fluid (water) in which mobile species
(solutes) are dissolved. We demonstrate the equivalent of the PHETS and TRI models and
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give equations that can be used to relate the PHETS material properties to the TRI material
properties. The PHETS formulation forms the basis for the development of finite element
models (FEMs) that allow the highly nonlinear, coupled PHETS field equations to be
solved for complex biological structures.

The objective of this paper is to present a specialized isotropic PHETS theory, in both
Eulerian and Lagrangian forms, that can be implemented using FEMs of soft hydrated
tissues. The isotropic models described here will consider a single neutral species; however,
the theory and FEMs can be extended to the anisotropic case for charged species (see
Kaufmann, 1996). This extended formulation can be utilized once appropriate experimental
data and anisotropic material properties are available. A mixed formulation will be used
since both the solid and fluid materials are assumed to be incompressible. The PHETS
model will have general applications to various soft tissue structures, but will only be
illustrated for mechanical and transport (water and albumin) analysis of in situ rabbit
thoracic aortas. We begin with the development of the field equations in order to identify
necessary material properties and provide the basis for the PHETS FEMs.

POROHYPERELASTIC-TRANSPORT-SWELLING (PHETS) FIELD EQUATIONS

Preliminary definitions andfundamental fields
The displacements and solid velocity at Xi and tare

(1)

where a superposed dot denotes the material time derivative defined with respect to the
solid, i.e.,

(2)

Superscripts s, f, and c denote the solid, fluid, and species respectively. The apparent relative
fluid and the apparent species velocities are

(3)

where vr is the average velocity of the fluid at Xi and t, defined so that the fluid volume flow
rate through a unit area perpendicular to the Xi-axis is nvr. Similarly, v~ is the average
velocity of the species at Xi and t, defined so that the apparent relative species velocity is
arbitrarily defined by eqn (3). The porous solid material in soft tissues is assumed incom
pressible and is also assumed to be saturated by an incompressible mobile fluid so that the
porosity is n = dvt'/d V = l-r i (1-no), with no = dV~/dVo. The subscript 0 denotes the
reference configuration at Xi and t. The species is considered to be dissolved in the fluid so
that species concentration is defined in terms of the fluid volume as

dmc

c=--
dV f

(4)

The total volume dV = dV'+dvt', i.e., the volume of the dissolved mobile species is neglec
ted. Some fundamental measures of deformation include the volume strain, deformation
gradient, and Finger's strain, i.e.,
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dV
J = dV

o
= detFu' (5a,b,c)

When both solid and fluid materials are incompressible, the true densities Pr = dm'/d V'
and P~ = dmf/d V

f
, are constant and a constraint is obtained of the form

(6)

Cauchy (true) stress measures include the total Cauchy stress, aij, the "solid" stress, aij,
and the "pore fluid stress," aL which is considered to be hydrostatic so that a& = refbu'with
ref = - (pore fluid pressure).

Equivalence ofPHETS and TRI models
The equivalence of the PHETS and TRI models is based on the phenomenological

equations. In the TRI model, these equations relate gradients in mechanical stresses (aij,
ref) and gradients in chemical potentials (j1" j1f, j1C) to drag forces associated with differences
in absolute constituent velocities (see Lai et al., 1991). The isotropic phenomenological
equations (see Kaufmann, 1996 for anisotropic forms) are

a,l
-nc-;- = P'(v~ -vD +Pf(V~ -vD (7c)

uXj

and form the basis for the TRI model. Introducing total stress, au = (l-n)a~j+mrfbij' and
the relative velocities definitions, Vi = V:' v~r = nevi - vD, and v~r = n(v~ - vD, in eqn (7) yields
the phenomenological equations expressed in terms of relative velocities as

oa·
-'J=O
OXj

(8a)

(8b)

(8c)

Here, eqn (8a) is obtained by replacing eqn (7a) with the sum of eqns (7a-7c). Also note
that (l-n)pT(oj1' lax;} +np~(olloXj)+nc(oj1c/ox;} = O. Now eqns (7) and (8) provide the
relations between the TRI and the PHETS phenomenological coefficients, i.e., aff = ffs +ffc,
afc = acf = ffc = fcf, and acc = P' +pf, thus relating material properties of the PHETS model
to those of the TRI model. Various equivalent formulations are possible, e.g. here we
present a mixed PHETS model where u;, nf

, and c are the primary fields and v~r and v~r are
eliminated from the theory. This is accomplished by solving eqn (8c) for v~r as

(9)

and substituting eqn (9) into eqn (8b) to obtain the Darcy law (eqn 12b, below) and
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substituting eqn (9) into the definition for relative species flux,lr == cv~r, to obtain eqn (12c,
below).

Mixed Eulerian PHETS model
The field equations now include (a) the conservation equations (total momentum,

mass of solid and fluid, and mass of the species)

avfr a afr a
-aJ +Dkk = 0, -a(nc) + -a' + -a(ncv;) = °

X j t Xi Xi
(lOa,b,c)

(b) the kinematic equations (Eulerian strain, velocity strain, pore fluid pressure gradient,
and concentration gradient)

acC
eC =-

I ax;
(1la,b,c,d)

and (c) the constitutive equations ("effective stress," a~j' generalized Darcy law, and relative
species flux)

(12a,b,c)

Equations (10-12) are the isotropic form of the PHETS initial boundary value problem.
We have assumed no strain dependence in the chemical potentials land p,c (see Kaufmann,
1996 for a more general anisotropic formulation including this strain dependence). The
necessary PHETS material properties are the effective stress, au, the hydraulic permeability,
k ff, the osmotic pressure gradient, anc/ax;, and the diffusion and convection coefficients, dCC
and bcf

• One can relate the set of PHETS material properties to the set of TRI properties
using these definitions and the relations between the phenomenological coefficients above,
thereby allowing either set of properties to be used in the analysis process.

Principles ofvirtual velocities
The Eulerian and Lagrangian principles of virtual velocities (PVV) form a basis for

FEMs, as well as identifying the appropriate correspondence rules for stresses and relative
velocities in the formulation of the PHETS field problem. The Eulerian PVV in mixed form
is

r {)e
a

a
(nc)dV- r {)e~Kdv+f {)e

a

a
(ncv;)dv+f Jelrn;dA = ° (13c)Jv t Jv v X, A

where ni is the unit normal to the area dA. Using appropriate correspondence rules, eqn
(13) can be transformed into a mixed Lagrangian PVV of the form
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(l4a)

(l4b)

(l4c)

where no; is the unit normal to the area dAo. In the total Lagrangian formulation, all field
variables are considered to be dependent on X j and t, i.e., the displacement is U; = u;(Xj ,

t) = Xj-X" nf = nf(Xj, t), c = c(Xj , t), etc. The relations between field variables described
in the Eulerian and Lagrangian PVV allow the identification of correspondence rules. The
classical correspondence rules relate Cauchy stress to the first and second Piola-Kirchhoff
stresses (defined below). The relative fluid velocity and relative species velocity are also
related by correspondence rules. Then vir can be referred, in the Lagrangian sense, to the
reference configuration by defining a Lagrangian relative fluid velocity, Vir, that corresponds
to vir so that the same relative fluid mass flow rate occurs through areas dA and dAo, i.e.,
pjvirn; dA = pjoVirno; dA. A similar correspondence rule applies to relative species velocities,
iJ7r and vjr; i.e., with definitions of Eulerian and Lagrangian relative species flux given as
If' = cvfr andlr = ciJ7r, the correspondence islrn; dA = lrno; dAo (equal relative species flux
through corresponding areas dA and dAo). Then, for an incompressible fluid (pj = pjo)
with c(x j , t) = c(Xj, t) and using the Nanson formula, Vir corresponds to vir and iJ7r to vfr as
V;r = J(oXJoxJV)r and iJ7r = J(oXJoxJvj'.

Mixed Lagrangian PHETS model
The mixed Lagrangian field equations are (a) the conservation equations (total momen

tum, mass of solid and fluid, and species mass),

oTjj oif/ . d oler

oX. = 0, oX. +JHijEIj = 0, -(nJc) + -' = °
} } dt oX;

(l5a,b,c)

where the first and second Piola-Kirchhoff stresses are TIj = JF;; I (Jk; and
SIj = JF j--;" I (JmnFi~ I, respectively; (b) the kinematic equations (Green's strain, pore fluid
pressure gradient, and concentration gradient)

"" oc
ej = oX

I

(l6a,b,c)

and (c) the constitutive equations (effective total second Piola-Kirchhoff stress, S~j, gen
eralized Darcy law, and the relative species flux)

JX:r = - (ff; ec + bcfcfjr
I IJ J I

(l7a,b,c)

We now have corresponding Eulerian and Lagrangian PHETS theories that provide partial
differential equations to be solved for u" nf

, and c subject to boundary conditions and initial
conditions.

ISOTROPIC PHETS MATERIAL PROPERTIES

We consider a single, neutral species (with no strain dependence in JJf and pC) using
corresponding sets ofEulerian and Lagrangian material properties for the PHETS model(s).
The Eulerian material properties are: (a) solid-generalized hyperelastic drained strain
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energy density function if, defining the effective stress as O"~j = J,-1 F;m(oUejoEmn)Fnj ; (b)
fluid-hydraulic permeability, kff = n2[aff_afC(aCC)-lacf]-1 and osmotic pressure gradient,
onc jox; = gCe~, with osmotic coefficient, gC = - [afc(aCc) -I c(oJl joe) +pj(oJljoe)] ; and (c)
species--diffusion and convection coefficients, dcc = n2c(oJ1.Cjoc) and bcf = (aCC)-lacf. In
addition, the porosity, no, is needed in n = I-J- 1(1-no). The PVV provides the cor
respondence rules relating Eulerian fields to the Lagrangian fields, thus determining math
ematical relations between the Eulerian and Lagrangian material property functions. Note
that although the Eulerian forms are isotropic, the corresponding Lagrangian forms are not
isotropic. The Lagrangian properties include: (a) solid-generalized hyperelastic effective
strain energy density function, if, defining Sij = oUejoEij; (b) fluid-hydraulic
permeability, krr = JkffHij' and osmotic coefficient, it = gC; and (c) species--diffusion
coefficient, dij = J dec H ij , and convection coefficient, Ecf = bcf. For isotropic materials,
by the principle of equipresence, all material property functions are dependent on the
strain invariants ~, L, J, and c; e.g., if = if(~, L, J, c), krr = krr(!;, L,1, c), etc., where
~ = J-2/3II and L = J- 4

/
3I 2 are deviatoric strain invariants with II = 3+2Ekk and

12 = 3+4Ekk +2[EuE.iJ-EijEuJ· Specific forms for these material properties and material
parameters will be given for rabbit aortic tissues based on experimental observations.

FINITE ELEMENT MODEL (FEM)

There are several possible formulations for finite element models, e.g., Eulerian porohy
perelastic FEMs in ABAQUS, Lagrangian porohyperelastic (mixed, penalty, etc.) FEMs,
Lagrangian biphasic (mixed, penalty, etc.) FEMs, mixed TRI FEMs, etc. Note that the
ABAQUS can be used for porohyperelastic or biphasic models, but cannot be used directly
for the development ofPHETS or TRI FEMs where species transport is included. We have
developed a mixed, total Lagrangian PHETS FEM program for the analysis of coupled
structural-transport processes in soft hydrated tissues. Using the (bold-faced) matrix
notation u = {u;}, etc., this mixed Lagrangian FEM is based on interpolations in each finite
element of the form u = Nuu (quadratic) and nf = N"ft and c = Nci: (both linear) to form
the quasi-static assembled global system of equations for the FEM

(18)

Then the boundary and initial conditions are prescribed, and a time integrator is applied
(e.g., a backward difference with Newton-Rapheson iteration) to determine ret), which
contains elemental ii, ft, and c. A modified Petrov-Galerkin method (Yu and Heinrich
1986, 1987) was introduced to provide accurate solutions for the situations where there is
significant convective flux (and relatively large Peclet numbers) in the arterial wall tissues.
The PHETS FEM program was verified using analytical solutions and simulations of
rubber tubes and arteries. The transport analysis capability of the program was verified by
comparison of FEM and analytical solutions for diffusion-convection problems. We will
not present the details of the finite element formulation and program here and refer the
reader to Kaufmann (1996) for further specific information.

A FEM was developed to represent a segment of rabbit aorta as a layered cylinder
(intima and media) in a state of axisymmetric, plane strain (see Fig. 1). The FEM was

z

It
Fig. 1. Axisymmetric plane strain PHETS FEM of a rabbit aorta including intima (J) and media

(M). The adventitia was removed in the experiments.
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subjected to initial and boundary conditions representing internal pressure, axial stretch,
and prescribed species concentration in the bath solutions at the internal and/or external
surfaces of the models. The FEM (converged mesh) was composed of 43 elements (4 thin
elements for the intima and 39 elements for the media). The adventitia was removed in the
experiments and was not included in these FEMs. These FEMs were also used as the basis
for the data-reduction procedures, which provided the necessary material parameters.
Representative FEM results are given here for rabbit aortic sections undergoing finite strain
and subjected to mechanical forces and pressures as well as concentration gradients in
albumin (considered as a single neutral species dissolved in the fluid).

PHETS MATERIAL PROPERTIES FOR RABBIT AORTAS

The experimental data were obtained from rabbit aortas subjected to axial stretch,
inflation, and immersion in bathes) of labeled albumin dissolved in physiological buffered
saline (PBS) solution. Data were obtained from our laboratory and from the work of
Tedgui and Lever (1985). Mobile water motion in the arterial tissue was determined from
the velocity, VB' of an air bubble introduced in the inflation cannulation tube. Values for VB

were measured at various pressure levels in order to determine aortic (intimal and medial)
tissue permeability. The experimental protocols and apparatus are described by Simon et
al. (1998) and Baldwin et al. (1992), and the data-reduction methods by Simon et al. (1997).
These methods are based on a generalized least-squares approach in which an error,

N data

e = L (F:t0del - Jetn 2 ,

M~I

(19)

is minimized to determine material parameters. In this expression,rodel = r odel (material
parameters) andFxp is the corresponding experimental value, whererodel is obtained from
either analytical models or from the PHETS FEM. Following are the PHETS material
properties and corresponding material parameters that were determined for rabbit aortas:
(a) A generalized Fung form for U = (1/2)Co(e¢ -1), with ¢ = C'I ([I - 3) +C; ([2 - 3)
.+K (J - 1)2, was quantified using rapid (undrained) inflation to provide values for Co, C; ,
and C; and steady-state (drained) inflation (n! = 0) to determine K. (b) Permeabilities
(k~ = k) for the intima and media, klNT and kMEO (adventitia removed). Medial and intimal
permeabilities were determined using steady-state inflations ofde-endothelialized and intact
vessels to provide VB versus P data to minimize e, in which a constant kMEO and a nonlinear
form for klNT = kINT(P, A) were assumed. At the outset, the osmotic pressure term, one/or,
was not included in this series of models, but is being introduced in the next phase of this
modeling effort. Comparison of FEM and experimental data for P - r and VB - P are shown
in Figs 2 and 3. (c) Diffusion and convection parameters (d~~ = d, b~~ = b) were quantified
as constant. The intimal and medial diffusion coefficients, dINT and dMEO (adventitia
removed), were determined using rabbit aortas for which P = 0 (no convection) and data
for labeled albumin concentration profile(s) after 25 min of immersion in internal and
external albumin PBS solutions with concentration Ca. The data-reduction program deter
mined values for dINT and dMED to minimize e. Figure 4 illustrates the close agreement
between our experimental data and the PHETS FEM using optimal values for dINT and
dMEO to calculate the albumin concentration profile.

The labeled albumin concentration profiles reported by Tedgui and Lever (1985) were
used in our data-reduction procedure to determine intimal and medial bcf

, i.e., blNT and
bMEO (both assumed constant). Tedgui and Lever's experiments (including both diffusion
and convection) determined steady albumin concentration profiles for pressurized rabbit
aortas for damaged (de-endothelialized) and intact vessels immersed in an external albumin
solution with concentration Ca. The data-reduction procedure determined the constants
bINT and bMED (using known diNT, dMEo, kINT, and kMEO) with P = 70 and 180 mm Hg for
damaged and intact vessels. Figure 5 shows a comparison of results from PHETS and
FEMs using these material parameters with data from Tedgui and Lever's experiments.
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Fig. 3. Experimental and FEM results for air bubble velocity (VB) vs pressure (PI Co) data for intact
and de-endothelialized rabbit aortas subjected to steady-state pressurization.

The large strains associated with pressurization of the aortas are clearly visible in this figure.
Also, the Peclet numbers predicted by the PHETS FEM agreed well with the experimental
results. Thus all the required material parameters for this PHETS model were determined
for rabbit aortas, i.e., the constants Co, C'lo C;, K', kMED, dMED, and bMED for the media and
dINT and bINT for the intima, as well as any parameters in the nonlinear form for kINT(P, A).
We must emphasize, however, that the intima is a thin, complex layer that is not a PHETS
material, but was represented here by finite elements, so that kINT, dINT, and bINT are to be
considered as average values (resistance) associated with a thin-layer approximation.
Table I lists the numerical values for the PHETS material parameters determined for the
representative rabbit aortas considered in this paper.
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Fig. 5. Steady-state labeled albumin concentration profiles (c/cB) in the deformed arterial wall:
finite element results compared with Tedgui and Lever's (1985) experimental data; CB = bath

concentration of albumin.

An additional simulation was carried out using the PHETS FEM of the rabbit aorta.
The FEM of the pure diffusion experiment was subjected to internal fluid pressure, P = 70
mm Hg, in order to introduce convection effects in the transport processes in the aortic
wall. In this FEM, diffusion occurs from both the internal and external surfaces due to the
presence of labeled albumin at these surfaces. In addition, convection of the albumin occurs
as relative fluid flux develops due to the mechanical pressure gradient across the aortic wall.
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Table I. Axisymmetric, plane strain, isotropic PHETS material properties

Property

U'

dfj-+dC::=d

bV-+b~;=b

(onC/ox,) ->(onc/or)

Media (MED)

UMED = 1/2Co(e"-I)
<P = C;(J,-3)-C;(i;-3)+K'(J-1)'
Co = 8130 N/m', C I = 0.907,
C; = 0.00248, K' = 12.5

kMED = 1.05 X 10- 5 m4/N-s

dMED = 2.93 X 10- 13 m'/s

bMW = 0.150

(onc/or) = gMED(oclor)
not considered

Intima (lNT)

UiNT negligible

k'NT(P, A) = nonlinear function (Simon
et aI, 1997)

diNT = 2.69 X 10- 15 m'/s

bINT = 0.050

(onc/or) = glNT(oc/or)
not considered

Figure 4 (dashed line) clearly shows the effect of convection in the transport of labeled
albumin, i.e., the 25-min albumin concentration profile is "shifted" to the right from the
pure diffusion response due to convective transport. The value for blNT reported here
corresponds to the diffusion/convection case (P = 70 mm Rg) shown in Fig. 4. Additional
tests and data reduction will be necessary to determine blNT (and diNT) for the thin intimal
layer.

CONCLUSION

This paper has presented a specialized isotropic formulation for the PRETS theory
and a mixed PRETS FEM that were used to analyze coupled transport processes of a
(neutral) species in the wall of a rabbit aorta. The model can be extended to include
anisotropy and multiple charged species (see Kaufmann, 1996). Phenomenological equa
tions provide the basis for the TRI and PRETS models. The phenomenological equations
were converted to a PRETS model formulation (either Eulerian or Lagrangian) so that
FEMs could be developed and PRETS material properties identified that have physical
significance as hyperelasticity and permeability and as osmotic, diffusion, and convection
coefficients. These properties were also quantified using specific experiments and data
reduction methods based on systematic procedures (described in related publications) to
determine the material parameters in the PRETS material properties (U", k INT, kMED , diNT'

dMED, bINT, and bMED). We have demonstrated the equivalence of the PRETS model and
the TRI model based on the formulation of the phenomenological equations and have
given mathematical expressions that can be used to relate material properties in these two
models. This means that either PRETS or TRI material properties could be introduced in
the PRETS FEMs of a soft hydrated tissue where water and species transport are of
interest.

There are a number of directions for future research using the PRETS theory and
FEMs. Our isotropic models will lead to anisotropic models once appropriate experimental
data are available. The effects of active smooth muscle and pre-stress conditions associated
with tissue remodeling (opening angle) can be introduced. We will conduct a more detailed
analysis of the complex behavior of the intima (barrier transport function, etc.) at the
microscopic level and plan to consider the adventitia in our future arterial models. We are
currently considering PRETS models including multiple charged species and 01{jOXj in the
theoretical and FEM development.

We anticipate specific applications of the PRETS theory and FEMs in the following
areas:

(l) fundamental study of artherogenesis at specific initiation sites (branches, etc.) in the
walls of arteries;
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(2) combine PRETS FEMs with computational fluid dynamic models of the arterial system
to consider flows and coupled fluid/structural/transport interactions with flexible vessel
walls, again addressing the etiology of atherosclerosis;

(3) develop PRETS FEMs oflocal drug delivery systems, i.e., simulate the balloon catheter
system and local transport processes in the arterial wall ;

(4) utilize PRETS theory to model and design "tissue-engineered" arterial grafts (currently
being studied in our laboratory) to begin quantifying the processes of tissue in-growth
and endothelialization, as well as to help identify mechanical/transport graft responses
that may serve as initiators of hyperplasia.
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